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The Earth’s magnetic field can have a very marked effect on the motion of a magnetized 

space vehicle about its center of mass. Several papers (e.g. [l to 31) analyzing the pos- 
sibility of passive stabilization of such a satellite along a line of force of the geomagnetic 
field have already appeared. 

The problems considered in the present paper are closely related to the classical prob- 
lems of rotation of a solid body about a stationary point in homogeneous and Newtonian 

force fields. 

1. The equationa of motion. Let us introduce the absolute right geocentric 

coordinate system xl x2& (see Fig. 1) whose axis & coincides with the Earth’s axis of 
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rotation. At the center of mass G of the satellite we take three 

additional right frames X1X2X3 , yl YaY3 and ZlZ2& . 
The axes Xi are parallel to the respective axes xi ; y, are 
the principal central inertial axes of the satellite. The axis 23 

‘-- of the orbital coordinate system Zk coincides with the radius 

X, G vector of the center mass of the satellite ; 21 coincides with 

Z_r 
the orbit transversal (i,J, k = 1, 2, 3) . 

=I The position of the trihedron y, relative to the axes Xl and 

Fig. 1 zI( will be specified by means of the direction cosines yJi 

and a j L , respectively ; clearly, in this case yla = a12, y2a = a,, 
and ~$3 = aa. 

Let us adopt the dipole model of the Earth’s magnetic field. Then, assuming the coin- 
cidence of the geographic and geomagnetic poles, for the magnetic intensity vector of 
this field we have (in accordance with [4]) H = I_le n/p, where i_c, is the geomagnetic 
constant, fl is the radius vector of the center of mass of the satellite, and n is the unit 

vector of the axis X3 . 
We shall assume that the magnetic moment I’ of the satellite consists of the constant 

component I and the magnetic moment of the shell. The direction cosines of the vector 
relative to the thrihedron y, will be denoted by ?-j~ . 

The satellite shell will be assumed to be geometrically symmetrical and magnetized 
along its axis of symmetry. We also assume that the axis of symmetry of the shell coin- 

cides with one of the principal inertial axes of the satellite, e. g. y3 . The magnetic 
moment of the shell in the first approximation can be written (according to [5 and 61) 
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asZY,/H,where f =&,-- 1) v Ei% f4n, and where &, and U are the magnetic per- 

meabili~ of the shell and the shell volume. 

In a magnetic field of intensity H such a satellite is acted on by the magnetic 
moment M = I” x H. The gravitational moment can be written as in r2]. The other 

moments will be neglected. The orbit will be considered given. The equations of motion 
of the satellite about its center of mass in this bounded problem are as follows : 

A,dp, : dt + (A3 - -%f p2p3 = IH h2?33 - ?3y2S) - &z~YJJ + .76 & - A,)a,3%3 (f-4) 

.%&2 f dt 4- 6% - 4) ~93 = JH h3~13 - ‘I& + 5~13~~ + 36 (A - A& oi3a, 

&Qsldt f (A - A) PlPa = IH (%Yzs - ~~13) + 36 (AZ - A&r~,s 

Here 41, Aa ,A3 are the moments of inertia of the satellite relative to the axes y, , 
pa , .&$ , respectively ; p1 ,pa ,_pa are the projections of the absolute angular velocity 
of the satellite on the same axes ; p is the gravitational constant ; 6 = p/fi3. 

Let us complement system (1.1) with Poisson relations for the direction cosines 

drrs / dt = Y23P3 - y33p2 (f2V 

da,, / dt = a23~3 - asspil + ~11 (123) 

(1.2) 
(1.3) 

da,, / dt = a,G3 - aalps - cm,, (123) (1.4) 

Here the symbol (123) indicates that the remaining relations carr be obtamed by cyclic 
~rmutation ; W is the angular velocity of rotation of the satellite center of mass along 

its orbit , 

If the orbit is circular, then system (1. I) to (1.4) admits of the existence of a Jacobi- 

type integral A lpra + A,P,*, + -43~3a - 21 *H - 5 YZ? + 30’ (A+,,’ + (1.5) 

+ &%a2 + &%3*) - 20 (&%YlS + &%Y23 i- J43PaY33) = h 

This integral can be given a clear physical interpretation by converting to the angular 

velocities C& ,qa ,qa relative to the orbital axes. We obtain 

A,!?? + -4,&? + 4’132 - 21. H - < y2s* + 3w2 (A1ccrJ8 + 

+ &G + A3~ssz) - ma b41Y1a8 + 4Y 2x2 + AY 33%) = h (f.6) 

This relation yields the energy conservation law in the form T + V, + V, + V, =;: h, 

where y is the kinetic energy in relative motion, K is the potential energy of the mag- 

netic forces, Vn is the potential energy of the gravitational forces, and v3 is the poten- 

tial energy of the centrifugal forces. 
The above system appears not to have other integrals. 

2. Rotation of A rrtsllits ln the mrgnatlc field, With certainsatel- 
lites the magnetic moments can play the major role, the influence of the gravitational 
field being limited to the production of perturbations. In view of this it is interesting to 

investigate the motion of a satellite in a magnetic force field alone. In the absence of 
gravitational moments we can write out yet another first integral which reflects the con- 

stancy of the projection of the satellite’s kinetic moment relative to its center of mass 
on the axis x3 . This integral is of the form 

A,P,YI~ + Aeyas + -43~3~33 = R (2.1) 

Let us rewrite (1.5) and (2, l), introducing in the usual way the Euler angles of nutation 
0 , precession Jr , and intrinsic rotation cp in order to define the position of the satellite 
relative to the axes x1 . We obtain 
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4, (+ sin 8 sin cp + 8’ cos ~12 + AP (9’ sin 6 cos ‘p - 8’ sin tp)% I_ A&)’ cos H -+- 9’)’ 
- ZZH(~1sin8singF+~,sin8cos~+~,cosO)-~cosZ8=h 

A,(+sin8sincp +O’coaqp)sinOsintp +&(~‘sinOcosg, - 
- 8’ sin cp) sin 8 cos ‘p + A, (q co8 6 + tp’) cos 0 = K 

The coordinate $ is cyclic. Let us consider the steady-state rotations of the satellite 

defined by the conditions 
cp’ = 3’ =: 0, CF =cpo, 8 = $0, Ilt’ = 1pe’ (2.2) 

To investigate these rotations we apply Routh’s theorem IJ and 83. The Routh,poten- 
tial I’I for the scleronomic system under consideration is 

l-I = Kpg / 2a - ZH(~tsin8sin~++rl,sinOcos~+~,CosO)-~ccc~s~/2 

a = A, sit? 0 sina cp + As sina 0 co@ cp + A, CCL+ 8 

Here Ko represents the integral of the kinetic moment computed under conditions 

(2. ‘L). The angles cpo and 8, must be determined from Expressions an/&p = 0 and 
bfl/a@ = 0 which are of the form 

[(A, -A%) $oq sin 8 sin z(p + 2IH (qr cos cp - Q sin cp)] sin 0 = 0 

Wo” - 6) am28 + 2ZH [(rh sincp + n, cosrp) cos 8 - -q&n $1 = 0 

b=A,sin%p+A,cos~a,-AA, 
(2.3) 

These equations isolate the permanent axes in the body of the satellite. In order for 
the rotations about these axes to be stable the Routh potential must have a mfnimum. 

The sufficient conditions for stability are 

(Al - AZ) g,‘s sins 0 { --cos Z(p + B, sin% sine 2q~) + ZH sin 8 (Q sin cp + ns cos cp) > 0 

I@, - Aa) (-cos 29 + B1 sin* 8 sins 2@ I$~‘~ sin* 0 + IH sin 0 (qr sin cp + 
+ Q cos @I [bq,,,,” (-cos 20 + bl sina 28) + 5 cos 28 + ZH (rh sin 8 sin ip + 

j- ff.: sin 0 cos rp + qs cos O)] + &lpo’* (i-2b1 sin* 8) sin 20 sin Z(p + ZH co& x 
X (?h coscp - 7jz sincp)le > 0 

B, = (A, - A,) / n, B, = (A, - A,) / 2, b,=b/n 

The motion of a dynamically symmetrical satellite (A, =A8 #AS) about its center 
of mass is equivalent to the motion of a dynamicaMy symmetrical solid about a station- 
ary point in a Newtonian central force field when the distance to the center of attraction 

substantially exceeds the dimensions of the body. Such a problem admits of complete 
integra tfon @ 1. 

If the magnetic moment of the satellite shell is small as compared with the magnetic 

moment I, then the motion of the satellite about its center of mass closely resembles 
the motion of a heavy solid about a fixed point. 

In fact, if we neglect the magnetization oi the shell, then the equations of rotation of 
the satellite coincide with the equations of rotation of a heavy solid to within the nota- 
tion. 

A case analogous to the Euler case results if 1 is equal to zero. A dynamically sym- 

metrical satellite with the magnetic moment directed along its axis of dynamic symmet- 
ry moves in the same way as a heavy solid in the Lagrange-Poisson case ; on the other 
hand, if the magnetic moment lies in the equatorial plane of the central ellipsoid of 
inertia of the satellite and if the condition A 1 = A a = -2.4 3 is fulfilled, then the motion 
of such a satellite is analogous to the motion of a heavy solid fn the Kovalevski case. 
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The steady-state rotations of a heavy solid are considered in detail in [9 to 111. 

In the case of a constantly magnetized satellite the equation of the cone analogous 
to the Staude cone is of the form 

(A, -4) ~llz3s33+ (4 -4 s2Yl3Y33 + (4 -4rlzylsY33 =o 

Let us consider, for example, the following particular solution of system (1. l), (1.2) : 

Pj = 03 Yjs = qj 

This particular solution is associated with equilibrium of the satellite in absolute axes 
where its magnetic moment is colinear with the magnetic intensity vector (the analog- 

ous case for the motion of a sold is the equilibrium state in which the center of gravity 

occupies its lowest position). It is clear that such equilibrium must be stable . 
Let us prove this with the aid of integral (1.5). We denote the angle between the 

magnetic moment vector I of the satellite and the vector H by v and expand cos v in 

a Taylor series. Substituting the expansion into (1.5), we obtain 

A, pla + 4 paa + A, pa2 + IHva + A = h” (h”=hf2IH) 

Here n is the sum of terms of higher than the third order in v. In this form the integ- 

ral is a positively defined function of its arguments. Hence, the equilibrium state under 

consideration is, in fact, stable in pJ and v . 

It is clear that the other possible equilibrium state where the vectors I and H are anti- 
parallel is unstable (the analogous case for a solid is the equilibrium state in which the 
center of mass occupies its uppermost position). 

3, Motion of the trtellite with interaction of the mrgnetlc rnd 
gravitational field:. Let us assume that the vector I coincides with the axis go 

of the satellite. 

Let us investigate the possibility of the equilibrium of the satellite in absolute axes. 

As we infer from system (1. l), such equilibrium requires simultaneous fulfillment of the 

following Eqs. : UH+ Foss) 192~ - 38 (A3 - -42) oz30z3 = 0 

(ZH + CYSS) y13 + 36 (4 - AZ) a130a3 = 0 

(4 - 4) a,,a,, = 0 

This means that absolute equilibrium is possible only if the axis g3 is the axis of dyna- 
mic symmetry of the satellite and if this axis coincides with the normal to the orbital 

plane. 
Let us now consider the precessions of the satellite for which it maintains an unchanged 

position relative to the orbital axes. From system (1.1) we obtain the necessary condi- 
tions for the existence of such a relative equilibrium (in a circular orbit), 

(ZH + [f + (As - A,) dl ad apI - 30’ (Aa - Ad ara ws = 0 

{ZH + 15 - (A, - As) 0’1 asa} ala + 30’ (A, - As) %~%a = 0 

(4 - 4) (-al%% + 3 %l%J - 0 

Let us note down several of the possible precession states. 
The state aI8 = f 1, a= = f i.The axis E/3 is vertical. 
The state alo = ala = 0. The axis g3 lies in the plane 1323 and the axis 91 is nor- 

nal to this plane. Here cos Y = --HI [ha&--d +cl 

The state alp = uaa = 0. The axis g3 lies in the plane ZlZa and the axis 1/1 is nor- 

mal to this plane. Here 
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cos Y = - IH I [b2fAs - A,) + 61 

The state a,, = a,, = 0. The axis Q, lies in the plane 21~~ and the axis & is 

normal to this plane. Here cos v = - IH / 102 (A, - A,) + c] 

The state a,, c aBJ = 0. The axis g3 lies in the plane zpz3 and the axis ya is nor- 

malt0 this plane. Here COSY = - IH/ [&$(A~ -A~) + 51 

Let us investigate the stability of the relative equilibrium of the satellite in which its 

magnetic moment is colinear with the magnetic intensity vector (the stateas = 1). 

Let us make. use of integral (1.6) written as 

A, 91’ + 442 + 4qsa - 2lffy, + C (yls2 + ~2) + ha k% - 4) ad + 

+ (A, - &a,*1 + a2 I&% - 4 b2 + 6% - -4) ~221 - 4 

Expanding y33 in a Taylor series, we find that this equilibrium is stable if Aa >A, >d: . 
Thus. if the axis 93 of the satellite is normal to the orbital plane and if it is associated 
with the largest of the moments of inertia, then the conditions of stability of the relative 

equilibrium are of the same form as in the absence of a magnetic field [2]. The moments 
of the magnetic forces improve practical stability (the condition A3 >A, can be replaced 
by the weaker condition 5 + 0% (A, - A,) > 0). 

The regular precession states of a dynamically symmetrical satellite in a gravitational 

field are considered in [U]. 
The author is grateful to V. V. Beletskii for his interest in the present study. 
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